Assume that f is differentiable at a.Compute limn??n?i=1k[f(a+in)?f(a)]Deduce the limit limn??n?i=1k[(n+i)mnm?1?1]

Free

50.1K

Verified Solution

Question

Basic Math

Assume that f is differentiable at a.

  1. Compute limn??n?i=1k[f(a+in)?f(a)]

  2. Deduce the limit limn??n?i=1k[(n+i)mnm?1?1]

Answer & Explanation Solved by verified expert
3.7 Ratings (572 Votes)

  • Compute limn??n?i=1k[f(a+in)?f(a)]

    limn??n?i=1k[f(a+in)?f(a)]=?i=1k[limn??n[f(a+in)?f(a)]]

    Let t=in?n=it?i=nt
    ?i=1k[limn??n[f(a+in)?f(a)]]=?i=1klimt?0i?f(a+t)?f(a)t=?i=1kif?(a)=k(k+1)2?f?(a)

    Therefore, A=K(K+1)2?f?(a)

  • Deduce the limit limn??n?i=1k[(n+i)mnm?1?1]

    limn??n?i=1k[(n+i)mnm?1?1]=?i=1k[limn??n((n+i)mnm?1)]

    We have: limn??n?(n+i)m?nmnm=limn??n?[(n+in)m?1]=limn??n?[(1+in)m?1]

    Let u=in,n??,u?0
    limn??n?[(1+in)m?1]=limu?0iu[(1+u)m?1]=limu?0i[(1+u)m?1u],bylimu?0(1+u)m?1u=m??i=1kim=mk(k+1)2

    Therefore, limn??n?i=1k[(n+i)mnm?1?1]=mk(k+1)2


b).

Therefore, limn??n?i=1k[(n+i)mnm?1?1]=mk(k+1)2

a).

Therefore, A=K(K+1)2?f?(a)

Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students