Use the data in the file andy.dta consisting of data onhamburger franchises in 75 cities from Big Andy's Burger Barn.
Set up the model
ln(Si)=b1 + b2ln(Ai) + ei,
where
Si = Monthly sales revenue ($1000s) for the i-th firm
Ai = Expenditure on advertising ($1000s) for the i-th firm
(a) Interpret the estimates of slope and intercept.
(b) How well did the model fit to the data? Use any tests andmeasures presented in class.
(c) Perform any test for heteroscedasticity in your data.
sales | price | advert |
73.2 | 5.69 | 1.3 |
71.8 | 6.49 | 2.9 |
62.4 | 5.63 | 0.8 |
67.4 | 6.22 | 0.7 |
89.3 | 5.02 | 1.5 |
70.3 | 6.41 | 1.3 |
73.2 | 5.85 | 1.8 |
86.1 | 5.41 | 2.4 |
81 | 6.24 | 0.7 |
76.4 | 6.2 | 3 |
76.6 | 5.48 | 2.8 |
82.2 | 6.14 | 2.7 |
82.1 | 5.37 | 2.8 |
68.6 | 6.45 | 2.8 |
76.5 | 5.35 | 2.3 |
80.3 | 5.22 | 1.7 |
70.7 | 5.89 | 1.5 |
75 | 5.21 | 0.8 |
73.7 | 6 | 2.9 |
71.2 | 6.37 | 0.5 |
84.7 | 5.33 | 2.1 |
73.6 | 5.23 | 0.8 |
73.7 | 5.88 | 1.1 |
78.1 | 6.24 | 1.9 |
75.7 | 5.59 | 2.1 |
74.4 | 6.22 | 1.3 |
68.7 | 6.41 | 1.1 |
83.9 | 4.96 | 1.1 |
86.1 | 4.83 | 2.9 |
73.7 | 6.35 | 1.4 |
75.7 | 6.47 | 2.5 |
78.8 | 5.69 | 3 |
73.7 | 5.56 | 1 |
80.2 | 6.41 | 3.1 |
69.9 | 5.54 | 0.5 |
69.1 | 6.47 | 2.7 |
83.8 | 4.94 | 0.9 |
84.3 | 6.16 | 1.5 |
66 | 5.93 | 2.8 |
84.3 | 5.2 | 2.3 |
79.5 | 5.62 | 1.2 |
80.2 | 5.28 | 3.1 |
67.6 | 5.46 | 1 |
86.5 | 5.11 | 2.5 |
87.6 | 5.04 | 2.1 |
84.2 | 5.08 | 2.8 |
75.2 | 5.86 | 3.1 |
84.7 | 4.89 | 3.1 |
73.7 | 5.68 | 0.9 |
81.2 | 5.83 | 1.8 |
69 | 6.33 | 3.1 |
69.7 | 6.47 | 1.9 |
78.1 | 5.7 | 0.7 |
88 | 5.22 | 1.6 |
80.4 | 5.05 | 2.9 |
79.7 | 5.76 | 2.3 |
73.2 | 6.25 | 1.7 |
85.9 | 5.34 | 1.8 |
83.3 | 4.98 | 0.6 |
73.6 | 6.39 | 3.1 |
79.2 | 6.22 | 1.2 |
88.1 | 5.1 | 2.1 |
64.5 | 6.49 | 0.5 |
84.1 | 4.86 | 2.9 |
91.2 | 5.1 | 1.6 |
71.8 | 5.98 | 1.5 |
80.6 | 5.02 | 2 |
73.1 | 5.08 | 1.3 |
81 | 5.23 | 1.1 |
73.7 | 6.02 | 2.2 |
82.2 | 5.73 | 1.7 |
74.2 | 5.11 | 0.7 |
75.4 | 5.71 | 0.7 |
81.3 | 5.45 | 2 |
75 | 6.05 | 2.2 |