The percentage of compression on the lumbar vertebral disks causes strain in an adult human....
90.2K
Verified Solution
Link Copied!
Question
Basic Math
The percentage of compression on the lumbar vertebral disks causes strain in an adult human. The strain can be measured by S(x) = 7.2956 In(0.0645012 x^0.95 + 1), where x is the physical load in kilograms (kg). Medical scientists are interested in the rate of change of the strain with respect to the load. This can be found with the derivative S'(x) or ds/dx. The derivative can be found by ... using the derivative rule for Inf(x)) to get 5'(x) = (7.2956) [1/(0.0645012 x 0.95 + 1)] * [(0.0645012) (0.95) x^(-0.05)), which can be simplified to approximately S'(x) = [0.44705] / [(0.0645012 x^0.95 + 1)*(x^ 0.05]] using the Chain Rule to get 5'(x) = 7.2956 In(0.0645012 x 0.95 + 1) ((0.0645012)(0.95) x^(-0.05]], which can be simplified to approximately S'(x) = [0.44705 In(0.0645012 x 0.95 + 1)] / [x^0.05] S'(x) = 7.2956 e^(0.0645012 x^0.95 + 1), where e is the irrational number approximated by 2.71828 using the derivative rule for In(f(x)) to get 5'(x) = (7.2956) [1/(0.0645012 x^0.95 + 1)], which can be simplified to S'(x) = 7.2956/(0.0645012 x^0.95 + 1)
Answer & Explanation
Solved by verified expert
Get Answers to Unlimited Questions
Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!
Membership Benefits:
Unlimited Question Access with detailed Answers
Zin AI - 3 Million Words
10 Dall-E 3 Images
20 Plot Generations
Conversation with Dialogue Memory
No Ads, Ever!
Access to Our Best AI Platform: Zin AI - Your personal assistant for all your inquiries!