The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal...

Free

70.2K

Verified Solution

Question

Advance Math

The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L.

A=( egin{pmatrix}2&0&0&0\ 0&2&0&0\ 0&0&1&0\ 0&0&0&3end{pmatrix} )

Answer & Explanation Solved by verified expert
4.2 Ratings (607 Votes)

Solution

A=( egin{pmatrix}2&0&0&0\ 0&2&0&0\ 0&0&1&0\ 0&0&0&3end{pmatrix} )

The characteristics polynomial. ( implies P(lambda)=|A-lambda I|=igg(2-lambdaigg)^2igg(1-lambdaigg)igg(3-lambdaigg)hspace{2mm} )

The algebraic multiplicity

( implies am(2)=2,am(1)=1,am(3)=1 hspace{2mm} )

The geometric multiplicity

( implies gm(2)=2,gm(1)=1,gm(3)=1hspace{2mm} )

The ( indeximplies Index(2)=1,Index(1)=1,Index(3)=1 hspace{2mm} )

The minimal polynomial

( implies m(lambda)=igg(lambda-1igg)igg(lambda-1igg)igg(lambda-3igg)hspace{2mm} )


Answer :

Therefore .

( implies P(lambda)=|A-lambda I|=igg(2-lambdaigg)^2igg(1-lambdaigg)igg(3-lambdaigg)hspace{2mm} )

( implies am(2)=2,am(1)=1,am(3)=1 hspace{2mm} )

( implies gm(2)=2,gm(1)=1,gm(3)=1hspace{2mm} )

( implies Index(2)=1,Index(1)=1,Index(3)=1 hspace{2mm} )

Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students