The data is in the nonlinear regime. The first column is plasticstrain values (e) and the second column is
corresponding true stress (s) values. In the nonlinear regime, therelation between e and s is:
? = ???
Where K,n are material constants which need to be determined usingcurve fitting.
a). Plot e vs s on a scatter plot
b). Find the constants n and K using curve fit. Wehave not learned how to fit a power law in class but here
is a hint: if you take the log of the equation above, it becomes alinear equation in log(e) and log(s).
Data
0.07913 | 400.1313 |
0.079274 | 400.394 |
0.079433 | 400.6575 |
0.079582 | 400.914 |
0.079731 | 401.1977 |
0.079875 | 401.4677 |
0.080019 | 401.7893 |
0.080168 | 402.084 |
0.080316 | 402.382 |
0.08046 | 402.6442 |
0.080609 | 402.8987 |
0.080753 | 403.1742 |
0.080907 | 403.4315 |
0.081056 | 403.7102 |
0.081205 | 403.9754 |
0.081359 | 404.258 |
0.081508 | 404.5485 |
0.081652 | 404.8328 |
0.081801 | 405.1216 |
0.081945 | 405.4012 |
0.082089 | 405.6714 |
0.082243 | 405.9478 |
0.082392 | 406.2127 |
0.082546 | 406.4651 |
0.082695 | 406.7232 |
0.082834 | 406.9823 |
0.082988 | 407.2513 |
0.083132 | 407.5583 |
0.08328 | 407.8404 |
0.083429 | 408.1223 |
0.083573 | 408.3959 |
0.083717 | 408.6451 |
0.083871 | 408.8914 |
0.084026 | 409.1303 |
0.084175 | 409.3806 |
0.084319 | 409.6619 |
0.084472 | 409.949 |
0.084621 | 410.2324 |
0.084765 | 410.4981 |
0.084914 | 410.7732 |
0.085068 | 411.0592 |
0.085212 | 411.3118 |
0.085357 | 411.515 |
0.085511 | 411.7665 |
0.085655 | 412.0262 |
0.085803 | 412.3185 |
0.085952 | 412.6021 |
0.086101 | 412.8792 |
0.08625 | 413.1566 |
0.086399 | 413.4088 |
USE MATLAB CODE ONLY!
USE MATLAB CODE ONLY!
THANK YOU