SALARY EDUC EXPER TIME 39000 12 0 1 40200 10 44 7 42900 12 5 30 43800 8 6 7 43800 8 8 6 43800 12 0 7 43800 12 0 10 43800 12 5 6 44400 15 75 2 45000 8 52 3 45000 12 8 19 46200 12 52 3 48000 8 70 20 48000 12 6 23 48000 12 11 12 48000 12 11 17 48000 12 63 22 48000 12 144 24 48000 12 163 12 48000 12 228 26 48000 12 381 1 48000 16 214 15 49800 8 318 25 51000 8 96 33 51000 12 36 15 51000 12 59 14 51000 15 115 1 51000 15 165 4 51000 16 123 12 51600 12 18 12 52200 8 102 29 52200 12 127 29 52800 8 90 11 52800 8 190 1 52800 12 107 11 54000 8 173 34 54000 8 228 33 54000 12 26 11 54000 12 36 33 54000 12 38 22 54000 12 82 29 54000 12 169 27 54000 12 244 1 54000 15 24 13 54000 15 49 27 54000 15 51 21 54000 15 122 33 55200 12 97 17 55200 12 196 32 55800 12 133 30 56400 12 55 9 57000 12 90 23 57000 12 117 25 57000 15 51 17 57000 15 61 11 57000 15 241 34 60000 12 121 30 60000 15 79 13 61200 12 209 21 63000 12 87 33 63000 15 231 15 46200 12 12 22 50400 15 14 3 51000 12 180 15 51000 12 315 2 52200 12 29 14 54000 12 7 21 54000 12 38 11 54000 12 113 3 54000 15 18 8 54000 15 359 11 57000 15 36 5 60000 8 320 21 60000 12 24 2 60000 12 32 17 60000 12 49 8 60000 12 56 33 60000 12 252 11 60000 12 272 19 60000 15 25 13 60000 15 36 32 60000 15 56 12 60000 15 64 33 60000 15 108 16 60000 16 46 3 63000 15 72 17 66000 15 64 16 66000 15 84 33 66000 15 216 16 68400 15 42 7 69000 12 175 10 69000 15 132 24 81000 16 55 SUMMARY OUTPUT Regression Statistics Multiple R 0.41198516 R Square 0.16973178 Adjusted R Square 0.16060795 Standard Error 6501.12045 Observations 93 ANOVA df SS MS F Significance F Regression 1 786253429 786253429 18.60313 4.08E-05 Residual 91 3.85E+09 42264567.1 Total 92 4.63E+09 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 38185.5979 3774.3766 10.117061 1.45E-16 30688.26252 45682.93 30688.26 45682.93 X...

80.2K

Verified Solution

Question

Statistics

SALARYEDUCEXPERTIME
390001201
4020010447
4290012530
43800867
43800886
438001207
4380012010
438001256
4440015752
450008523
4500012819
4620012523
4800087020
4800012623
48000121112
48000121117
48000126322
480001214424
480001216312
480001222826
48000123811
480001621415
49800831825
5100089633
51000123615
51000125914
51000151151
51000151654
510001612312
51600121812
52200810229
522001212729
5280089011
5280081901
528001210711
54000817334
54000822833
54000122611
54000123633
54000123822
54000128229
540001216927
54000122441
54000152413
54000154927
54000155121
540001512233
55200129717
552001219632
558001213330
5640012559
57000129023
570001211725
57000155117
57000156111
570001524134
600001212130
60000157913
612001220921
63000128733
630001523115
46200121222
5040015143
510001218015
51000123152
52200122914
5400012721
54000123811
54000121133
5400015188
540001535911
5700015365
60000832021
6000012242
60000123217
6000012498
60000125633
600001225211
600001227219
60000152513
60000153632
60000155612
60000156433
600001510816
6000016463
63000157217
66000156416
66000158433
660001521616
6840015427
690001217510
690001513224
810001655
SUMMARY OUTPUT
Regression Statistics
Multiple R0.41198516
R Square0.16973178
Adjusted R Square0.16060795
Standard Error6501.12045
Observations93
ANOVA
dfSSMSFSignificance F
Regression178625342978625342918.603134.08E-05
Residual913.85E+0942264567.1
Total924.63E+09
CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%
Intercept38185.59793774.376610.1170611.45E-1630688.2625245682.9330688.2645682.93
X Variable 11280.85932296.967124.313135124.08E-05690.97061641870.748690.97061870.748

This data set was obtained by collecting information on arandomly selected sample of 93 employees working at a bank.

SALARY- starting annual salary at the time of hire

EDUC   - number of years of schooling at the time ofthe hire

EXPER - number of months of previous work experience at the timeof hire

TIME    - number of months that the employee hasbeen working at the bank until now

2. Use the least squares method to fit a simple linear modelthat relates the salary (dependent variable) to education(independent variable).

a- What is your model? State the hypothesis that is to betested, the decision rule, the test statistic, and your decision,using a level of significance of 5%.

b – What percentage of the variation in salary has beenexplained by the regression?

c – Provide a 95% confidence interval estimate for the trueslope value.

d - Based on your model, what is the expected salary of a newhire with 12 years of education?

e – What is the 95% prediction interval for the salary of a newhire with 12 years of education? Use the fact that thedistance value = 0.011286

Answer & Explanation Solved by verified expert
3.7 Ratings (668 Votes)
a The assumed underlying model is a simple linear modelLooking under the Coefficients column of the fitted modelare the estimated coefficientsSo the fitted model isHypothesis testing for the InterceptThe test statistic Under the Null hypothesis is tdistributed withn1 931 92 degrees of freedomHerePlugging inHence the The obtained teststatistic At level of significance 5 ie The critical teststatistc value    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students