Prove the formulas given in this table for the derivatives of the functions cosh, tanh,...

70.2K

Verified Solution

Question

Advance Math

Prove the formulas given in this table for the derivatives of the functions cosh, tanh, csch, sech, and coth. Which of the following are proven correctly? (Select all that apply.)

(square frac{d}{d x}(operatorname{coth} x)=frac{d}{d x}left(frac{sinh x}{cosh x}ight)=frac{cosh x cosh x-sinh x sinh x}{cosh ^{2} x}=frac{cosh ^{2} x-sinh ^{2} x}{cosh ^{2} x}=-frac{1}{cosh ^{2} x}=-operatorname{csch}^{2} x) (square frac{d}{d x}(operatorname{csch} x)=frac{d}{d x}left(frac{1}{sinh x}ight)=-frac{cosh x}{sinh ^{2} x}=-frac{1}{sinh x} cdot frac{cosh x}{sinh x}=-operatorname{csch} x operatorname{coth} x)

(square frac{d}{d x}(cosh x)=frac{d}{d x}left[frac{1}{2}left(e^{x}-e^{-x}ight)ight]=frac{1}{2}left(e^{x}+e^{-x}ight)=sinh x)

(square frac{d}{d x}(operatorname{csch} x)=frac{d}{d x}left(frac{1}{sinh x}ight)=-frac{cosh ^{2} x}{sinh ^{2} x}=-frac{1}{sinh x} cdot frac{cosh ^{2} x}{sinh x}=-operatorname{csch} x operatorname{coth} x)

(square frac{d}{d x}(operatorname{sech} x)=frac{d}{d x}left(frac{1}{cosh x}ight)=-frac{sinh x}{cosh ^{2} x}=-frac{1}{cosh x} cdot frac{sinh x}{cosh x}=-operatorname{sech} x anh x)

Answer & Explanation Solved by verified expert
4.4 Ratings (849 Votes)
Proving the formula fracdd xoperatornamecoth xoperatornamecsch2 x eginaligned fracdd xoperatornamecoth xfracdd xleftfraccosh xsinh x ight Rightarrow fracdd xoperatornamecoth xleftfracleftsinh x fracdd x cosh xcosh x fracdd x sinh x ightsinh 2 x ight quad ext By quotient rule of differentiation Rightarrow fracdd xoperatornamecoth xleftfracsinh x cdot sinh xcosh x cdot cosh xsinh 2 x ight quadleftoperatornamesince fracdd x sinh xcosh x fracdd x cosh xsinh x ight Rightarrow fracdd xoperatornamecoth xleftfracsinh 2 xcosh 2 xsinh 2 x ight Rightarrow fracdd xoperatornamecoth xleftfrac1sinh 2 x    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students