Prove if the minimal polynomial of T (linear operator) is of the form p(t)=(phi(t))^m ,...

60.1K

Verified Solution

Question

Accounting

image

Prove if the minimal polynomial of T (linear operator) is of the form p(t)=(phi(t))^m , then there exists a rational canonical basis for T.

= Theorem 7.21. If the minimal polynomial of T is of the form p(t) ($(t))", then there exists a rational canonical basis for T. = Theorem 7.21. If the minimal polynomial of T is of the form p(t) ($(t))", then there exists a rational canonical basis for T

Answer & Explanation Solved by verified expert
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students