//// Please Solve the question using the outputs from stata given in the pictures ////...

80.2K

Verified Solution

Question

Accounting

//// Please Solve the question using the outputs from stata given in the pictures ////

2) the following production function of 9 companies is intended to be estimated using data from the period 2000-2017. Loutputit= Bo+B1 lexplapit+B2lexpcap+uit output: Logarithm of output quantity, lexplab: Logarithm of labor expenditures and lexpcap: Logarithm of capital expenditures. Evaluate the following tests separately and together and decide on the appropriate model (test comments that do not write hypotheses will be invalid). Take a=0.05 for the tests.

image

image

180 kt 1 . xtmixed output explab expcap || _all: R.id || _all: R.year, mle nolog Mixed-effects ML regression Number of obs Group variable: _all Number of groups Obs per group: min = 1 180 avg = 180.0 max 180 Wald chi2(2) Prob > chi2 567.92 0.0000 Log likelihood -1671.0971 output Coef. Std. Err. Z P> 121 [95% Conf. Interval] .0761391 0223318 .0323695 . 1199086 explab exp | _cons 3.41 6.16 0.001 0.000 .0485709 .0078814 .0331237 .0640181 7895.214 2111.549 3.74 0.000 3756.654 12033.78 Random-effects parameters | Estimate Std. Err. [95% Conf. Interval] _all: Identity sd(R.id) 6442.548 1458.452 4133.941 10040.4 _all: Identity sd(R.year) | 1902.48 365.5502 1305.473 2772.515 sd (Residual) 2022.256 115.6301 1807.862 2262.073 LR test vs. linear model: chi2(2) = 305.74 Prob > chi2 = 0.0000 kt 2 xtmixed output explab expcap. ll _all: R.id, mle nolog Mixed-effects ML regression Number of obs Group variable: all Number of groups = Obs per group: min = 180 1 180 avg = 180.0 180 max = 703.33 Wald chi2(2) Prob > chi2 Log likelihood = -1704.0539 0.0000 output Coef. Std. Err. Z p>121 [95% Conf. Interval] .0369725 1.25 0.212 -.0210408 0949858 explab exp | cons .0295992 .0101172 .0582713 5.76 0.000 .038442 .0781007 8299.795 2129.777 3.90 0.000 4125.508 12474.08 Random-effects parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity sd(R.id) 6655.105 1509.76 4266.32 10381.41 sd(Residual) 1 2747.155 149.0295 2470.055 3055.341 LR test vs. linear model: chibar2(01) = 239.83 Prob > chibar2 = 0.0000 kt 3 Xtmixed output explab expcap || _all: R.year, mle nolog Mixed-effects ML regression Number of obs Group variable: _all Number of groups 180 1 Obs per group: min = 180 avg = max = 180.0 180 784.43 Wald chi2(2) Prob > chi2 Log likelihood - -1803.0161 0.0000 output Coef. Std. Err. Z P> 121 (95% Conf. Interval] .0360694 5.66 0.000 . 1335522 explab expcap _cons . 2042468 .0683807 1927.345 .0127551 5.36 0.000 .0433812 .2749415 0933802 4304.863 1213.042 1.59 0.112 -450.1731 Random-effects parameters | Estimate Std. Err. [95% Conf. Interval) _all: Identity sd(R.year) 4511.862 899.2132 3052.892 6668.069 sd(Residual) 4837.834 270.9353 4334.917 5399.098 -> LR test vs. linear model: chibar2(01) = 41.90 Prob >= chibar2 = 0.0000 kti 4 twfe output explab expcap. Ids(id year) output: Convergence reached after iteration 1 with residual 3.2240e-20 explab: Convergence reached after iteration 1 with residual 3.2028e-20 expcap: Convergence reached after iteration 1 with residual 3.3204e-19 output: Convergence reached after iteration 1 with residual 1.3235e-21 Linear Model with Two-Way Fixed Effects Number of obs- 180 FC 30, 149) 209.24 Prob > 0.0000 R-squared = 0.9760 Adj R-squared - 0.9712 Root MSE 1864 (Std. Err. adjusted for clustering on none) output Coef. Std. Err. t Pit [95% Conf. Intervall .07963 .0226893 3.51 0.001 0347957 explab expcap . 1244643 .0636828 1 .0476919 .0080925 5.89 0.000 .031701 231.08 F-Test 1 Coefficients [ F2 All FES IF( 27 FE year F( 18, FE idi IF( 10, 8.05 149) 149) 149) 149) 2.157e-46 5.565e-18 1.553e-16 2.27e-129 9.21 945.30 kt 5 . xtset Id1 year panel variable: 1dl (strongly balanced) time variable: year. 1966 to 1963 delta: 1 unit - 180 10 Xtreg output explab expcap, fe Fixed-effects (within) regression Group variable: idi R-Sq: within = 0.8021 between = 0.9575 overall = 0.7341 = Number of obs Number of groups Obs per group min 18 avg 18.0 max - 18 340.55 F(2,168) Prob > F corru, Xb) = 0.5515 0.0000 output Coef. Std. Err. t Pit [95% Conf. Intervall explab .0342359 .0299312 1.14 0.254 -.0248539 .0933257 exp 1 .0586302 .0102289 5.73 0.000 .0384365 .0788239 _cons 8356.807 329.4041 25.37 0.000 7706.502 9007. 112 - sigma_u! 7083.4989 sigma_e) 2763.0524 rho 86793974 (fraction of variance due to 1) F test that all u_1=0: F(9, 168) = 78.46 9, ) Prob > F = 0.0000 akt 6 xtset year idi panel variable: year (strongly balanced) time variable: id, 1 to 10 delta: 1 unit 180 18 xtreg output explab expcap, fe Fixed-effects (within) regression Group variable: year R-59: within = 0.8302 between = 0.8266 overall - 0.7442 Number of obs Number of groups - Obs per group: min 10 10.0 avg - max 2 10 391.26 corr(u 1, Xb) F(2,160) Prob > -0.6125 0.0000 output Coef. Std. Err. t pit [95% Conf. Interval) --------------- 2088264 .0362021 5.77 0.000 . 1373309 explab expcap _cons 1 .0725118 .0128582 .0471181 5.64 0.000 2.35 0.020 2803218 .0979055 2588.78 1405.536 599.1407 222.2924 sigma_u 5237.2215 sigma_e | 4849.5906 rho .5383728 (fraction of variance due to ui) F test that all u_1=0: F(17, 160) = 7.28 Prob > F = 0.0000 180 kt 1 . xtmixed output explab expcap || _all: R.id || _all: R.year, mle nolog Mixed-effects ML regression Number of obs Group variable: _all Number of groups Obs per group: min = 1 180 avg = 180.0 max 180 Wald chi2(2) Prob > chi2 567.92 0.0000 Log likelihood -1671.0971 output Coef. Std. Err. Z P> 121 [95% Conf. Interval] .0761391 0223318 .0323695 . 1199086 explab exp | _cons 3.41 6.16 0.001 0.000 .0485709 .0078814 .0331237 .0640181 7895.214 2111.549 3.74 0.000 3756.654 12033.78 Random-effects parameters | Estimate Std. Err. [95% Conf. Interval] _all: Identity sd(R.id) 6442.548 1458.452 4133.941 10040.4 _all: Identity sd(R.year) | 1902.48 365.5502 1305.473 2772.515 sd (Residual) 2022.256 115.6301 1807.862 2262.073 LR test vs. linear model: chi2(2) = 305.74 Prob > chi2 = 0.0000 kt 2 xtmixed output explab expcap. ll _all: R.id, mle nolog Mixed-effects ML regression Number of obs Group variable: all Number of groups = Obs per group: min = 180 1 180 avg = 180.0 180 max = 703.33 Wald chi2(2) Prob > chi2 Log likelihood = -1704.0539 0.0000 output Coef. Std. Err. Z p>121 [95% Conf. Interval] .0369725 1.25 0.212 -.0210408 0949858 explab exp | cons .0295992 .0101172 .0582713 5.76 0.000 .038442 .0781007 8299.795 2129.777 3.90 0.000 4125.508 12474.08 Random-effects parameters Estimate Std. Err. [95% Conf. Interval] _all: Identity sd(R.id) 6655.105 1509.76 4266.32 10381.41 sd(Residual) 1 2747.155 149.0295 2470.055 3055.341 LR test vs. linear model: chibar2(01) = 239.83 Prob > chibar2 = 0.0000 kt 3 Xtmixed output explab expcap || _all: R.year, mle nolog Mixed-effects ML regression Number of obs Group variable: _all Number of groups 180 1 Obs per group: min = 180 avg = max = 180.0 180 784.43 Wald chi2(2) Prob > chi2 Log likelihood - -1803.0161 0.0000 output Coef. Std. Err. Z P> 121 (95% Conf. Interval] .0360694 5.66 0.000 . 1335522 explab expcap _cons . 2042468 .0683807 1927.345 .0127551 5.36 0.000 .0433812 .2749415 0933802 4304.863 1213.042 1.59 0.112 -450.1731 Random-effects parameters | Estimate Std. Err. [95% Conf. Interval) _all: Identity sd(R.year) 4511.862 899.2132 3052.892 6668.069 sd(Residual) 4837.834 270.9353 4334.917 5399.098 -> LR test vs. linear model: chibar2(01) = 41.90 Prob >= chibar2 = 0.0000 kti 4 twfe output explab expcap. Ids(id year) output: Convergence reached after iteration 1 with residual 3.2240e-20 explab: Convergence reached after iteration 1 with residual 3.2028e-20 expcap: Convergence reached after iteration 1 with residual 3.3204e-19 output: Convergence reached after iteration 1 with residual 1.3235e-21 Linear Model with Two-Way Fixed Effects Number of obs- 180 FC 30, 149) 209.24 Prob > 0.0000 R-squared = 0.9760 Adj R-squared - 0.9712 Root MSE 1864 (Std. Err. adjusted for clustering on none) output Coef. Std. Err. t Pit [95% Conf. Intervall .07963 .0226893 3.51 0.001 0347957 explab expcap . 1244643 .0636828 1 .0476919 .0080925 5.89 0.000 .031701 231.08 F-Test 1 Coefficients [ F2 All FES IF( 27 FE year F( 18, FE idi IF( 10, 8.05 149) 149) 149) 149) 2.157e-46 5.565e-18 1.553e-16 2.27e-129 9.21 945.30 kt 5 . xtset Id1 year panel variable: 1dl (strongly balanced) time variable: year. 1966 to 1963 delta: 1 unit - 180 10 Xtreg output explab expcap, fe Fixed-effects (within) regression Group variable: idi R-Sq: within = 0.8021 between = 0.9575 overall = 0.7341 = Number of obs Number of groups Obs per group min 18 avg 18.0 max - 18 340.55 F(2,168) Prob > F corru, Xb) = 0.5515 0.0000 output Coef. Std. Err. t Pit [95% Conf. Intervall explab .0342359 .0299312 1.14 0.254 -.0248539 .0933257 exp 1 .0586302 .0102289 5.73 0.000 .0384365 .0788239 _cons 8356.807 329.4041 25.37 0.000 7706.502 9007. 112 - sigma_u! 7083.4989 sigma_e) 2763.0524 rho 86793974 (fraction of variance due to 1) F test that all u_1=0: F(9, 168) = 78.46 9, ) Prob > F = 0.0000 akt 6 xtset year idi panel variable: year (strongly balanced) time variable: id, 1 to 10 delta: 1 unit 180 18 xtreg output explab expcap, fe Fixed-effects (within) regression Group variable: year R-59: within = 0.8302 between = 0.8266 overall - 0.7442 Number of obs Number of groups - Obs per group: min 10 10.0 avg - max 2 10 391.26 corr(u 1, Xb) F(2,160) Prob > -0.6125 0.0000 output Coef. Std. Err. t pit [95% Conf. Interval) --------------- 2088264 .0362021 5.77 0.000 . 1373309 explab expcap _cons 1 .0725118 .0128582 .0471181 5.64 0.000 2.35 0.020 2803218 .0979055 2588.78 1405.536 599.1407 222.2924 sigma_u 5237.2215 sigma_e | 4849.5906 rho .5383728 (fraction of variance due to ui) F test that all u_1=0: F(17, 160) = 7.28 Prob > F = 0.0000

Answer & Explanation Solved by verified expert
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students