Let x be a random variable that represents the level of glucose in the blood (milligrams...

90.2K

Verified Solution

Question

Statistics

Let x be a random variable that represents the level ofglucose in the blood (milligrams per deciliter of blood) after a12-hour fast. Assume that for people under 50 years old, x has adistribution that is approximately normal, with mean μ = 64 andestimated standard deviation σ = 40. A test result x < 40 is anindication of severe excess insulin, and medication is usuallyprescribed.

(a) What is the probability that, on a single test, x < 40?(Round your answer to four decimal places.)

(b) Suppose a doctor uses the average x for two tests takenabout a week apart. What can we say about the probabilitydistribution of x? (multiple choice options below)
The probability distribution of x is approximately normal withμx = 64 and σx = 28.28.
The probability distribution of x is approximately normal withμx = 64 and σx = 20.00.
The probability distribution of x is approximately normal withμx = 64 and σx = 40.
The probability distribution of x is not normal.

(b2) What is the probability that x < 40? (Round youranswer to four decimal places.)

(c) Repeat part (b) for n = 3 tests taken a week apart. (Roundyour answer to four decimal places.)

(d) Repeat part (b) for n = 5 tests taken a week apart. (Roundyour answer to four decimal places.)


(e) Compare your answers to parts (a), (b), (c), and (d). Didthe probabilities decrease as n increased?
yes
no

(e2) Explain what this might imply if you were a doctor or anurse.
The more tests a patient completes, the stronger is theevidence for excess insulin.
The more tests a patient completes, the weaker is the evidencefor lack of insulin.
The more tests a patient completes, the stronger is theevidence for lack of insulin.
The more tests a patient completes, the weaker is the evidencefor excess insulin.


(f)A certain mutual fund invests in both U.S. and foreign markets. Letx be a random variable that represents the monthly percentagereturn for the fund. Assume x has mean μ = 1.8% and standarddeviation σ = 0.6%.
(a) The fund has over 275 stocks that combine together to givethe overall monthly percentage return x. We can consider themonthly return of the stocks in the fund to be a sample from thepopulation of monthly returns of all world stocks. Then we see thatthe overall monthly return x for the fund is itself an averagereturn computed using all 275 stocks in the fund. Why would thisindicate that x has an approximately normal distribution? Explain.Hint: See the discussion after Theorem 7.2.
The random variable is a mean of a sample size n = 275. By the, the distribution is approximately normal.

(g) After 6 months, what is the probability that the averagemonthly percentage return x will be between 1% and 2%? Hint: SeeTheorem 7.1, and assume that x has a normal distribution as basedon part (a). (Round your answer to four decimal places.)

(h) After 2 years, what is the probability that x will bebetween 1% and 2%? (Round your answer to four decimalplaces.)

(i) Compare your answers to parts (b) and (c). Did theprobability increase as n (number of months) increased?

(j) If after 2 years the average monthly percentage return wasless than 1%, would that tend to shake your confidence in thestatement that μ = 1.8%? Might you suspect that μ has slipped below1.8%? (multiple choice)
This is very likely if μ = 1.8%. One would not suspect that μhas slipped below 1.8%.
This is very unlikely if μ = 1.8%. One would not suspect thatμ has slipped below 1.8%.
This is very unlikely if μ = 1.8%. One would suspect that μhas slipped below 1.8%.
This is very likely if μ = 1.8%. One would suspect that μ hasslipped below 1.8%.

Answer & Explanation Solved by verified expert
4.3 Ratings (570 Votes)
    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students