Income ($1000s) Household Size Amount Charged ($) 89.31 2.00 10985.47 61.08 5.00 9792.97 43.95 4.00 6527.55 55.15 6.00 9708.57 40.39 2.00 6335.20 34.06 3.00...

90.2K

Verified Solution

Question

Statistics

Income
($1000s) Household
Size Amount
Charged ($)
89.31 2.00 10985.47
61.08 5.00 9792.97
43.95 4.00 6527.55
55.15 6.00 9708.57
40.39 2.00 6335.20
34.06 3.00 4809.57
86.43 4.00 12314.59
79.49 3.00 10823.38
48.40 2.00 7172.03
46.49 3.00 6996.39
50.68 3.00 7349.23
73.77 5.00 11719.66
34.18 4.00 6062.71
81.64 3.00 9861.66
65.08 4.00 10411.15
41.96 3.00 8169.33
41.48 2.00 6705.15
45.21 3.00 5871.21
48.98 5.00 8627.18
35.70 4.00 6466.99
77.36 2.00 9646.36
79.00 3.00 11910.64
52.03 3.00 7624.06
42.91 3.00 7635.68
38.69 5.00 7955.40
59.49 2.00 6076.57
82.77 2.00 11637.13
9.93 3.00 3911.33
59.54 3.00 6756.73
44.92 3.00 7031.92
33.79 3.00 7777.11
27.66 2.00 5470.17
53.17 3.00 8559.86
35.15 4.00 6306.89
89.46 2.00 10466.76
26.45 5.00 4101.41
89.59 6.00 14962.20
73.96 4.00 12153.59
73.15 4.00 11324.99
56.15 3.00 9704.71
46.57 4.00 9592.53
38.29 5.00 7372.79
34.84 4.00 6708.17
74.27 2.00 8743.04
50.16 4.00 9211.51
85.99 3.00 12318.45
50.82 4.00 9109.05
79.99 3.00 12882.03
68.38 5.00 11310.12
64.42 5.00 11356.01
57.78 3.00 8030.32
50.85 3.00 8905.52
41.35 2.00 5863.35
68.88 4.00 10199.39
87.37 4.00 13589.18
42.15 7.00 8958.60
85.91 3.00 9884.07
79.22 4.00 11881.21
72.59 5.00 11091.60
70.79 3.00 12217.53
65.91 4.00 11661.95
50.88 4.00 6898.00
29.77 4.00 5342.99
82.30 2.00 9685.05
44.81 2.00 6882.08
3.99 1.00 1612.58
57.16 6.00 10069.27
23.25 5.00 8063.88
15.31 3.00 6064.65
72.60 3.00 12132.90
72.53 5.00 11562.23
80.31 1.00 9250.01
43.47 6.00 8147.12
65.82 2.00 10219.37
78.58 4.00 11057.59
37.36 5.00 8690.96
50.86 3.00 7186.18
77.72 3.00 12597.46
73.55 2.00 9859.00
73.87 4.00 10205.59
1) Provide graphical summaries of the data. Comment on yourfindings.
2) Develop an estimated regression equation, using annualincome as the independent variable. Insert Regression equationestimation results here (excluding the ANOVA):
a. Interpret the estimated slope coefficient.
b. Interpret the R-square.
c. Interpret the p-value on the slope.
d. Interpret the 95% confidence interval.
3) Develop an estimated regression equation, using householdsize as the independent variable. Insert Regression equationestimation results here (excluding the ANOVA):
a. Interpret the estimated slope coefficient.
b. Interpret the R-square.
c. Interpret the p-value on the slope.
d. Interpret the 95% confidence interval.
4) Which of the two models is the better predictor of annualcredit card charges? Defend your decision.
5) Provide a scatterplot of the standardized residuals fromyour chosen best model and comment whether the assumption appear tobe met.

Answer & Explanation Solved by verified expert
3.7 Ratings (478 Votes)
Using Rdf    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students