Given the following 40x40 matrix below, with startingvector V shown below also, apply the power method to find thedominant eigenvalue of matrix using MATLAB program, MAPLE programor some other computer program to print out: the estimate of thelambda with tolerance 0.01, the number of iterations, and theconverged lambda. Then print out the transpose of the eigenvector(should be 40 components) produced with up to twodecimals.
Starting Vector V= [
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
]; |
Matrix A =
[
4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
-1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
-1 0 0 0 0 0 0 0 0 0 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0;
0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0;
0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0;
0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0;
0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 00 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 0 00 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 00 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 00 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 00 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 0 0 0 -1 00 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 4 -1 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 00 -1 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 00 0 -1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 00 0 0 -1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 00 0 0 0 -1 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 00 0 0 0 0 -1 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 00 0 0 0 0 0 -1 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 00 0 0 0 0 0 0 -1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 4 00 0 0 0 0 0 0 0 -1;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 4-1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -14 -1 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0-1 4 -1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0-1 4 -1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 00 -1 4 -1 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 00 0 -1 4 -1 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 00 0 0 -1 4 -1 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 00 0 0 0 -1 4 -1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 00 0 0 0 0 -1 4 -1;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 00 0 0 0 0 0 -1 4;
]