Determine all possible Jordan canonical forms J for a matrix of order 6 whose minimal...

Free

50.1K

Verified Solution

Question

Advance Math

Determine all possible Jordan canonical forms J for a matrix of order 6 whose minimal polynomial is 

( m(lambda)=igg(lambda-1igg)^3igg(lambda-3igg)^2 )

Answer & Explanation Solved by verified expert
3.7 Ratings (555 Votes)

Solution

we have the minimal polynomial is 

( m(lambda)=igg(lambda-1igg)^3igg(lambda-3igg)^2 )

we take ( m(lambda)=0implies igg(lambda-1igg)^3igg(lambda-3igg)^2 =0 )

since ( lambda_1=1 hspace{2mm}andhspace{2mm}lambda_2=3 )

( implies Index(1)=3 ) (means the bigest Jordan block is ( 3 imes3 ))( implies Index(3)=2 )  (means the bigest Jordan block is ( 2 imes2 ))

Therefore. all possible Jordan Canonical form is :

( J_{1:}=egin{pmatrix}1&1&0&0&0&0\ 0&1&1&0&0&0\ 0&0&1&0&0&0\ 0&0&0&3&1&0\ 0&0&0&0&3&0\ 0&0&0&0&0&3end{pmatrix},J_2=egin{pmatrix}1&1&0&0&0&0\ 0&1&1&0&0&0\ 0&0&1&0&0&0\ 0&0&0&1&0&0\ 0&0&0&0&3&1\ 0&0&0&0&0&3end{pmatrix} )

 


Answer

Therefore. all possible Jordan Canonical form is :

( J_{1:}=egin{pmatrix}1&1&0&0&0&0\ 0&1&1&0&0&0\ 0&0&1&0&0&0\ 0&0&0&3&1&0\ 0&0&0&0&3&0\ 0&0&0&0&0&3end{pmatrix},J_2=egin{pmatrix}1&1&0&0&0&0\ 0&1&1&0&0&0\ 0&0&1&0&0&0\ 0&0&0&1&0&0\ 0&0&0&0&3&1\ 0&0&0&0&0&3end{pmatrix} )

Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students