Assume that the differences are normally distributed. Completeparts ?(a) through ?(d) below.
Observation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|
Upper X Subscript iXi | 46.746.7 | 47.747.7 | 45.645.6 | 50.250.2 | 48.448.4 | 50.850.8 | 47.847.8 | 48.648.6 |
---|
Upper Y Subscript iYi | 50.150.1 | 48.448.4 | 47.347.3 | 54.554.5 | 47.947.9 | 50.950.9 | 49.649.6 | 50.350.3 |
---|
?(a) Determine
d Subscript i Baseline equals Upper X Subscript i Baseline minusUpper Y Subscript idi=Xi?Yi
for each pair of data.
Observation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|
di | negative 3.4 ?3.4 | negative 0.7 ?0.7 | negative 1.7 ?1.7 | negative 4.3 ?4.3 | 0.5 0.5 | negative 0.1 ?0.1 | negative 1.8 ?1.8 | negative 1.7 ?1.7 |
---|
?(Type integers or? decimals.)
?(b) Compute
d overbard
and
s Subscript dsd.
d overbardequals=negative 1.650 ?1.650
?(Round to three decimal places as? needed.)
s Subscript dsdequals=1.605 1.605
?(Round to three decimal places as? needed.)?(c) Test if
mu Subscript d?dless than<0
at the
alpha?equals=0.05
level of significance.
What are the correct null and alternative? hypotheses?
A.
Upper H 0H0?:
mu Subscript d?dless than<0
Upper H 1H1?:
mu Subscript d?dequals=0
B.
Upper H 0H0?:
mu Subscript d?dgreater than>0
Upper H 1H1?:
mu Subscript d?dless than<0
C.
Upper H 0H0?:
mu Subscript d?dless than<0
Upper H 1H1?:
mu Subscript d?dgreater than>0
D.
Upper H 0H0?:
mu Subscript d?dequals=0
Upper H 1H1?:
mu Subscript d?dless than<0