5.232608753 51.33997 1 4.559347708 3.047033 0 4.550088246 11.71957 1 3.386566659 28.04548 1 0.989064618 0.202602 0 4.555668273 67.83218 1 4.186405129 53.06328 1 1.207150769 78.43352 0 3.445792543 14.46725 1 2.962975266 23.10411 0 0.173612404 65.70817 0 2.768815371 65.28198 1 2.747367434 97.82201 1 4.486882933 77.4523 1 4.824678695 0.743551 0 5.586206724 48.65186 1 2.755386381 73.45392 1 1.787901977 97.36504 1 5.951385802 90.85691 1 2.737556923 15.44293 0 5.408894983 4.157112 0 1.715859824 0.937882 0 1.278844906 74.59771 0 2.514277044 97.32341 1 3.187058008 38.67714 1 4.949777159 87.91089 1 5.948802076 99.45704 1 4.58854855 73.22006 1 4.944593251 2.002865 0 4.095092929 30.82503 1 1.580255616 81.42979 1 5.582168688 77.37155 1 1.409875297 73.8556 1 4.173571574 10.78412 0 3.405384527 76.08957 1 5.303746588 91.13028 1 2.646338619 30.76739 0 5.648448558 24.47563 0 5.460162608 6.448907 1 2.530400279 92.75311 1 5.282410782 26.05696 1 4.798709185 42.12116 1 4.300055705 57.20119 1 4.729502404 6.523547 0 2.476612604 55.6309 1 3.190133005 67.05927 1 1.021463153 77.07357 1 0.733750098 95.86227 1 2.724156232 4.533329 0 4.232730005 96.12467 1 For a column of data x and a column of data y, there is an...

90.2K

Verified Solution

Question

Basic Math

  1. 5.23260875351.339971
    4.5593477083.0470330
    4.55008824611.719571
    3.38656665928.045481
    0.9890646180.2026020
    4.55566827367.832181
    4.18640512953.063281
    1.20715076978.433520
    3.44579254314.467251
    2.96297526623.104110
    0.17361240465.708170
    2.76881537165.281981
    2.74736743497.822011
    4.48688293377.45231
    4.8246786950.7435510
    5.58620672448.651861
    2.75538638173.453921
    1.78790197797.365041
    5.95138580290.856911
    2.73755692315.442930
    5.4088949834.1571120
    1.7158598240.9378820
    1.27884490674.597710
    2.51427704497.323411
    3.18705800838.677141
    4.94977715987.910891
    5.94880207699.457041
    4.5885485573.220061
    4.9445932512.0028650
    4.09509292930.825031
    1.58025561681.429791
    5.58216868877.371551
    1.40987529773.85561
    4.17357157410.784120
    3.40538452776.089571
    5.30374658891.130281
    2.64633861930.767390
    5.64844855824.475630
    5.4601626086.4489071
    2.53040027992.753111
    5.28241078226.056961
    4.79870918542.121161
    4.30005570557.201191
    4.7295024046.5235470
    2.47661260455.63091
    3.19013300567.059271
    1.02146315377.073571
    0.73375009895.862271
    2.7241562324.5333290
    4.23273000596.124671
    For a column of data x and a column of data y, there is an equationthat relates the slope of the line of best fit (m) with thecorrelation coefficient (r). That equation is:

m = r * std(y)/std(x)

In the equation above, std(y)represents the standard deviation of the y column of data andstd(x) is the standard deviation of the x column of data.

Use the Pandas .corr() and .std()methods to compute the slope of the line of best fit betweenDiameter and Pigment?first & second col?.

Next, use compute the y-intecept ofthe line of best fit using:

b = ybar – m*xbar

         Lastly, plotthe line of best fit using matplotlib.pyplot.

Answer & Explanation Solved by verified expert
4.1 Ratings (646 Votes)
Assuming the data is already stored in datacsv by the columnnames of x and yCodeimporting pandas as pdimport pandas as pdimporting matplotlibpyplot as pltimport matplotlibpyplot    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students