1. Let N be a normal subgroup of G and let H be any subgroup of...

80.2K

Verified Solution

Question

Basic Math


1. Let N be a normal subgroup of G and let H be any subgroupof G. Let HN = {hn|h ? H,n ?
N}. Show that HN is a subgroup of G, and is the smallestsubgroup containing both N and H.


Answer & Explanation Solved by verified expert
3.6 Ratings (320 Votes)
If H is a subgroup of N and if N is a normal subgroup Then wehave to prove HN is also a subgroupNow Now consider an    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students