0 mod 35 = 〈0 mod 5, 0 mod 7〉 12 mod 35 = 〈2...

70.2K

Verified Solution

Question

Advance Math

0 mod 35 = 〈0 mod 5, 0 mod 7〉 12 mod 35 = 〈2 mod 5, 5 mod 7〉 24mod 35 = 〈4 mod 5, 3 mod 7〉
1 mod 35 = 〈1 mod 5, 1 mod 7〉 13 mod 35 = 〈3 mod 5, 6 mod 7〉 25 mod35 = 〈0 mod 5, 4 mod 7〉
2 mod 35 = 〈2 mod 5, 2 mod 7〉 14 mod 35 = 〈4 mod 5, 0 mod 7〉 26 mod35 = 〈1 mod 5, 5 mod 7〉
3 mod 35 = 〈3 mod 5, 3 mod 7〉 15 mod 35 = 〈0 mod 5, 1 mod 7〉 27 mod35 = 〈2 mod 5, 6 mod 7〉
4 mod 35 = 〈4 mod 5, 4 mod 7〉 16 mod 35 = 〈1 mod 5, 2 mod 7〉 28 mod35 = 〈3 mod 5, 0 mod 7〉
5 mod 35 = 〈0 mod 5, 5 mod 7〉 17 mod 35 = 〈2 mod 5, 3 mod 7〉 29 mod35 = 〈4 mod 5, 1 mod 7〉
6 mod 35 = 〈1 mod 5, 6 mod 7〉 18 mod 35 = 〈3 mod 5, 4 mod 7〉 30 mod35 = 〈0 mod 5, 2 mod 7〉
7 mod 35 = 〈2 mod 5, 0 mod 7〉 19 mod 35 = 〈4 mod 5, 5 mod 7〉 31 mod35 = 〈1 mod 5, 3 mod 7〉
8 mod 35 = 〈3 mod 5, 1 mod 7〉 20 mod 35 = 〈0 mod 5, 6 mod 7〉 32 mod35 = 〈2 mod 5, 4 mod 7〉
9 mod 35 = 〈4 mod 5, 2 mod 7〉 21 mod 35 = 〈1 mod 5, 0 mod 7〉 33 mod35 = 〈3 mod 5, 5 mod 7〉
10 mod 35 = 〈0 mod 5, 3 mod 7〉 22 mod 35 = 〈2 mod 5, 1 mod 7〉 34mod 35 = 〈4 mod 5, 6 mod 7〉
11 mod 35 = 〈1 mod 5, 4 mod 7〉 23 mod 35 = 〈3 mod 5, 2 mod 7〉

2.2 Which of the numbers (mod 35) are relatively prime to 35?List them in CRT (Chinese Remainder Theorem) notation.

2.3. For each number x in the answer to #2.2, compute x 2 (mod35).

2.4 Verify that each square has four square roots (mod 35).

2.5 1 is a square (mod 35). Two of its square roots are 1 and(‐1 ≡ 34 (mod 35)). What are the other two?

Answer & Explanation Solved by verified expert
3.6 Ratings (508 Votes)
Using CRT the    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students